Chapter 4

Electric Potential

Intended Learning Outcomes of the lecture (ILOs):

When you have completed this section, the students will be able to:

- Define the electric potential difference
- Identify the electric Potential differences in a
 Uniform electric field and a Non-uniform electric
 field
 - Understanding the Equipotential surfaces.

Chapter 4 **POTENTIAL DIFFERENCE Definition of electric potential difference potential difference between two points** *A* **and** *B* **as** the work done by an external agent in moving a test charge q_0 from *A* to *B i.e.*

S.I unit of electric potential difference joules/coulomb, or volts.

Chapter 4 Electric potential difference is scalar

The **potential difference** is independent **on the path** between *A* and *B*. Since the work (W_{AB}) done to move a test charge q_0 from *A* to *B* is independent on the path,

Since the work may bea) positive $V_B > V_A$ b) negative $V_B < V_A$ c) zero $V_B = V_A$

You should remember that the work equals

 $W = f_{ex}l = F_{ex}l\cos\theta$ If $0 < \theta < 90$ $\cos\theta$ is +ve and therefore the W is +veIf $90 < \theta < 180$ $\cos\theta$ is -ve and therefore the W is -veIf $\theta = 90$ between F_{ex} and dltherefore W is zero

Chapter 4 POTENTIAL DIFFERENCE

W > 0 $V_B > V_A$

W < 0 $V_B < V_A$

Chapter 4 1- potential differences in a uniform electric field

the differential work dW done on a particle by a force during

a displacement ds

 $dW = \overrightarrow{F.ds}$

 $dW = q_o \vec{E.ds}$

The potential difference $V_f - V_i$ is

$$V_f - V_i = \int_i^f \overrightarrow{E.ds} = \int_i^f E ds \cos \theta$$

The angle between *E* and *ds* zero

Chapter 4

$$V_f - V_i = -\int_i^f E ds = -E \int_i^f ds = E d$$
$$\Delta V = E d$$

Note that :

E has a new unit (V/m).

Volte / *Meter* = Newton / Coulomb

Chapter 4

2. Potential differences in a non-uniform electric field

 $dW = \overrightarrow{F}.\overrightarrow{ds}$ $dW = \overrightarrow{q_o}\overrightarrow{E}.\overrightarrow{ds}$

The potential difference $V_f - V_i$ is

$$V_f - V_i = \int_i^f \overrightarrow{E.ds}$$

If the point *i* is taken to infinity then Vi = 0

the potential V at point f is

$$V_f = \int_{\infty}^{f} \overrightarrow{E.ds}$$

Chapter 4 **Equipotential Surfaces**

The equipotential surface is a surface such that the potential has

the same value at all points on the surface. *i.e.* Vf - Vi = zero for any two points on one surface.

Field line

$$W = q(V_f - V_i)$$

Where $(V_f - V_i) = \mathbf{Zeo}$.: W= Zero

Chapter 4 Equipotential Surfaces

- **1. The net electric force does no work as a charge moves on an equipotential surface.**
- 2. The electric field created by any charge or group of charges is everywhere perpendicular to the associated equipotential surfaces.
- 3. The electric field points in the direction of decreasing potential.

