

Intended Learning Outcomes of the lecture (ILOs):

When you have completed this section, the students will be able to: Identify the Electric Potential Differences due to a Point Charge and Electric Dipole

- Understanding the concepts of Electric potential energy
- Demonstrate how can determine the Electric field

- Apply the principle laws of Electric Potential to solve some problems تطيق القوانين فى بض المسانل

Chapter 4

$$
V=\underline{W} \quad \Delta V=E d \quad \underline{\text { Uniform Electric field }}
$$

$$
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot \overrightarrow{d s}
$$

Non-Uniform Electric field
POTENTIAL DUE TO A POINT CHARGE

$$
\begin{aligned}
& \because E=\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q}{r^{2}} \\
& V=E d \\
& 1
\end{aligned}
$$

$$
\because V=\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q}{r^{2}} \cdot r
$$

$$
\because V=\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q}{r}
$$

Chapter 4

Electric potential difference is scalar

$$
\begin{aligned}
V_{A} & =\frac{q}{4 \pi \varepsilon_{o}} \cdot\left(\frac{1}{r_{A}}\right) \\
V_{B} & =\frac{q}{4 \pi \varepsilon_{o}} \cdot\left(\frac{1}{r_{B}}\right)
\end{aligned}
$$

$$
V_{B}-V_{A}=\frac{q}{4 \pi \varepsilon_{o}} \cdot\left(\frac{1}{r_{B}}-\frac{1}{r_{A}}\right)
$$

Potential Due to a Group of Point Charge

$$
V_{t o t}=V_{1}+V_{2}+V_{3}+\cdots \ldots+V_{n}
$$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \sum_{1}^{n} \frac{q_{i}}{r_{i}}
$$

Chapter 4

Potential due to an electric dipole

$V==\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{r_{(-)}-r_{(+)}}{r_{(+)} r_{(-)}}\right) \quad V==\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{P \cos \theta}{r^{2}}\right)$
(electric dipole)
$\boldsymbol{V}=\mathbf{0}$ when $\boldsymbol{\theta}=\mathbf{9} \mathbf{0}^{\circ}$
\boldsymbol{V} is the maximum positive value when $\boldsymbol{\theta}=\boldsymbol{0}^{\boldsymbol{o}}$
V is the maximum negative value when $\theta=180^{\circ}$.

Chapter 4
 ELECTRIC POTENTIAL ENERGY

Electric Potential Energy: The work required to bring them from infinity to that configuration

$$
\begin{aligned}
& \mathbf{U}=\mathbf{V \mathbf { q } _ { 2 }} \\
& \because V=\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q}{r} \\
& \therefore U=\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q_{1} q_{2}}{r}
\end{aligned}
$$

$$
\therefore U=\sum \frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q_{i} q_{j}}{r_{i j}}
$$

Chapter 4

Electric potential energy is scalar

U :- positive (+) this means that the exchange forces of system will be repulsive
U :- Negative (-) this means that the exchange forces of system will be attractive

ELECTRIC FIELD FROM POTENTIAL DIFFERENCE

Now we determine the electric field from the electric potential by the following relation.

$$
E=\frac{d V}{d r}
$$

Chapter 4

EXAMPLES

Example. 1

What is the electric potential at point P, located at the center of the square of point charges shown in Figure? The distance d is 1.3 m , and the charges are.
$q_{1}=+12 \mathrm{nC}, q_{2}=+31 \mathrm{nC}, q_{3}=-24 \mathrm{nC}, q_{4}=+17 \mathrm{nC}$

Solution

$$
\boldsymbol{V}=\sum_{i=1}^{4} \boldsymbol{V}_{\boldsymbol{i}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\boldsymbol{q}_{1}}{\boldsymbol{r}}+\frac{\boldsymbol{q}_{2}}{\boldsymbol{r}}+\frac{\boldsymbol{q}_{3}}{\boldsymbol{r}}+\frac{\boldsymbol{q}_{4}}{\boldsymbol{r}}\right)
$$

The distance \boldsymbol{r} is $\mathbf{d} / \sqrt{2}$, which is 0.919 m , and the sum of the charges is

$$
q_{n e t}=\left(q_{1}+q_{2}+q_{3}+q_{4}\right)=(12-24+31+17) \times 10^{-9}=36 \times 10^{-9} c
$$

Thus,

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{36 \times 10^{-9}}{0.919}=350 V
$$

Chapter 4

Example. 2

Three charges are held fixed as shown in the figure. What is the potential energy? Assume that $q=1 \times 10^{-7} \mathrm{C}$ and $a=10 \mathrm{~cm}$

Solution

$$
\begin{aligned}
& \mathbf{U}=\mathbf{U}_{12}+\mathbf{U}_{13}+\mathbf{U}_{23} \\
& U=\frac{1}{4 \pi \varepsilon_{O}} \cdot\left[\frac{(+q)(-4 q)}{a}+\frac{(+q)(+2 q)}{a}+\frac{(-4 q)(+2 q)}{a}\right]+1 q \\
& U=\frac{-10}{4 \pi \varepsilon_{O}} \cdot\left[\frac{q^{2}}{a}\right] \\
& U=-\frac{9 \times 10^{9}(10)\left(1 \times 10^{-7}\right)^{2}}{0.1}=-9 \times 10^{-3} J
\end{aligned}
$$

Chapter 4

Example. 3

Two charges of $2 \mu \mathrm{C}$ and $-6 \mu \mathrm{C}$ are located at positions $(0,0) \mathrm{m}$ and $(0,3) \mathrm{m}$, respectively as shown in figure.
(i) Find the total electric potential due to these charges at point $(4,0) \mathrm{m}$.

Solution

$$
\begin{aligned}
& V_{p}=V_{1}+V_{2}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}\right) \\
& V=9 \times 10^{9}\left(\frac{2 \times 10^{-6}}{4}+\frac{6 \times 10^{-6}}{5}\right)=-6.3 \times 10^{3} \text { Vote }
\end{aligned}
$$

(ii) How much work is required to bring a $3 \mu \mathrm{C}$ charge from ∞ to the point \boldsymbol{P} ?

$$
W=q_{3} V_{p}=3 \times 10^{-6} \times-6.3 \times 10^{3}=-18.9 \times 10^{-3} J
$$

The -ve sign means that work is done by the charge for the movement from sezto P.

Chapter 4

(iii) What is the potential energy for the three charges?

$$
\begin{gathered}
\mathbf{U}=\mathbf{U}_{\mathbf{1 2}}+\mathbf{U}_{\mathbf{1 3}}+\mathbf{U}_{\mathbf{2 3}} \\
U=\frac{1}{4 \pi \varepsilon_{o}} \cdot\left[\frac{\left(2 \times 10^{-6}\right)\left(-6 \times 10^{-6}\right)}{3}+\frac{\left(2 \times 10^{-6}\right)\left(3 \times 10^{-6}\right)}{4}+\frac{\left(-6 \times 10^{-6}\right)\left(3 \times 10^{-6}\right)}{5}\right] \\
\therefore \mathbf{U}=-\mathbf{5 . 5} \times \mathbf{1 0} \mathbf{- 2} \text { Joule }
\end{gathered}
$$

Example 4

A particle having a charge $q=3 \times 10^{-9} \mathrm{C}$ moves from point a to point b along a straight line, a total distance $d=0.5 \mathrm{~m}$. The electric field is uniform along this line, in the direction from a to b, with magnitude $E=200 \mathrm{~N} / \mathrm{C}$. Determine the force on q, the work done on it by the electric $\underline{\text { field }}$, and the potential difference $V_{\underline{a}}-V_{\underline{b}}$.

Chapter 4

Example. 5

Point charge of $+12 \times 10^{-9} \mathrm{C}$ and $-12 \times 10^{-9} \mathrm{C}$ are placed 10 cm part as shown in figure Compute the potential at point a, b, and c. Compute the potential energy of a point charge $+4 \times 10^{-9} \mathrm{C}$ if it placed at points a, b, and

Solution

We need to use the following equation at each point to calculate the potential,
$\therefore V=\sum_{n} V_{n}=\frac{1}{4 \pi \varepsilon_{o}} \sum \frac{q_{i}}{r_{i}}$

At point a

$\therefore V_{a}=9 \times 10^{9}\left[\frac{12 \times 10^{-9}}{0.06}+\frac{-12 \times 10^{-9}}{0.04}\right]=-900 \mathrm{Volt}$

Chapter 4

At point \boldsymbol{b}

$\therefore V_{b}=9 \times 10^{9}\left[\frac{12 \times 10^{-9}}{0.04}+\frac{-12 \times 10^{-9}}{0.14}\right]=-1930$ Volt
At point c

$$
\therefore V_{b}=9 \times 10^{9}\left[\frac{12 \times 10^{-9}}{0.1}+\frac{-12 \times 10^{-9}}{0.14}\right]=\text { OVolt }
$$

We need to use the following equation at each point to calculate the potential energy

$$
\mathbf{U}=\mathbf{q} \mathbf{V}
$$

At point a

$$
U_{a}=q V_{a}=4 \times 10^{-9} \times(900)=-36 \times 10^{-7} \mathrm{~J}
$$

Chapter 4

At point b

$$
\mathrm{U}_{\mathrm{b}}=\mathrm{q} \mathrm{~V}_{\mathrm{b}}=4 \times 10^{-9} \times(1930)=+77 \times 10^{-7} \mathrm{~J}
$$

At point c

$$
\mathrm{U}_{\mathrm{c}}=\mathrm{q} \mathbf{V}_{\mathrm{c}}=4 \times 10^{-9} \times(0)=0 \mathrm{~J}
$$

Example 6

In the rectangle shown in figure $q_{1}=-5 \times 10^{-6} \mathrm{C}$ and $q_{2}=2 \times 10^{-6} \mathrm{C}$ calculate the work required to move a charge $q_{3}=3 \times 10^{-6} \mathrm{C}$ from B to A along the diagonal of the rectangle.

Solution Pag. 66 in book

