CH. 1 MULTIPLE CHOICE QUESTIONS

1. A coulomb is the same as:

D) An ampere · second

2. A kiloampere hour is a unit of:

D) Charge

- 3. The magnitude of the charge on an electron is approximately:
 <u>D) 1.6 × 10⁻¹⁹ C</u>
- 4. The charge on a glass rod that has been rubbed with silk is called positive:

A) By arbitrary convention

- 5. To make an uncharged object have a negative charge we must:<u>D) Add some electrons</u>
- 6. To make an uncharged object have a positive charge:
 <u>D) Remove some electrons</u>
- 7. An electrical insulator is a material:D) Cannot be a pure chemical element

- 8. A conductor is distinguished from an insulator with the same number of atoms by the number of:
 - B) nearly free electrons
- 9. A positively charged metal sphere A is brought into contact with an uncharged metal sphere B. As a result:

A) Both spheres are positively charged

10.Which of the following terms is used to describe a material that does not allow electrons to easily move through it?

c) Insulator

- 11. Silicon is an example of what type of material?<u>c) Semiconductor</u>
- 12. The electrostatic force between acting on each particle due to the presence of the other

c) Depends on r².

- 13. the net electric charge on an object is<u>e) Quantized.</u>
- 14. Principles describes how the net electric charge of an isolated system undergoing any process remains constant?

b) Law of the conservation of electric charge

CH. 2 MULTIPLE CHOICE QUESTIONS

- 1. An electric field is most directly related to:
 - C) The force acting on a test charge
- 2. As used in the definition of electric field, a "test charge":
 - D) None of the above
- 3. The units of the electric field are: B) <u>N/C</u>
- 4. Electric field lines:
 - C) Are none of the above
- 5. Choose the correct statement concerning electric field lines:
 <u>B) Field lines are close together where the field is large</u>
- 6. The diagram shows the electric field lines due to two charged parallel metal plates. We conclude that:

B) A proton at X would experience the same force if it were placed at Y

7. The magnitude of the electric field at a distance r from an isolated point particle with charge q is:

A) <u>kq/r²</u>

8. The diagram shows the electric field lines in a region of space containing two small charged spheres (Y and Z). Then:

D) <u>Y is positive and Z is negative</u>

9. Two protons (p₁ and p₂) are on the x axis, as shown below. The directions of the electric field at points 1, 2, and 3, respectively, are:

10.The diagram shows a particle with positive charge Q and a particle with negative charge –Q. The electric field at point P on the perpendicular bisector of the line joining them is:

11. The electric field due to a uniform distribution of charge on a spherical shell is zero:

E) Only inside the shell

F)

12. The force exerted by a uniform electric field on a dipole is:

E. none of the above

CH. 3 MULTIPLE CHOICE QUESTIONS

1. A charged point particle is placed at the center of a spherical Gaussian surface. The electric flux Φ_E is changed if:

<u>C)The point charge is moved off center (but still inside the original</u> <u>sphere)</u>

2. Choose the INCORRECT statement:

D) According to Gauss' law, if a closed surface encloses no charge, then the electric field must vanish everywhere on the surface

3. What is the best choice for the shape of a Gaussian surface?

E) It should be one that matches the symmetry of the charge distribution.

4. A point particle with charge q is placed inside the cube but not at its center. The electric flux through any one side of the cube:

E) cannot be computed using Gauss' law

- 5. Principles or laws describes the electric flux through a surface that encloses a charge?
 - **B)** Gauss' law
- 6. Gauss' law relate the electric field at points on a Gaussian surface?
 - **D) net charge enclosed by the surface**
- 7. principles can be derived from Gauss' law?
 - **B)** Coulomb's law
- 8. The electric field at the surface of a conductor be perpendicular to the surface. Why?
 - **B)** If it was not perpendicular, then charges on the surface would be moving

CH. 4 <u>MULTIPLE CHOICE QUESTIONS</u>

1) Positive charge is distributed uniformly throughout a non-conducting sphere. The highest electric potential occurs:

A) <u>At the center</u>

- 2) The equipotential surfaces associated with a charged point particles are:
 <u>D) Concentric spheres centered at the particle</u>
- 3) The quantity that is equal to the electric potential?

E) <u>U/q</u>

- 4) The SI units for the electric potential?
 <u>D) volt (V)</u>
- 5) Which one of the following phrases best describes the electric potential of a charged particle?

D) the potential energy per unit charge

6) A uniform electric field is directed parallel to the +y axis. If a positive test charge begins at the origin and moves upward along the y axis, how does the electric potential vary, if at all?

A) The electric potential will decrease with increasing y.

7) Which one of the following statements concerning equipotential surfaces is true?

D) The net work done by electric forces that move a charge along an equipotential surface is equal to zero joules.

- 8) Which one of the following statements concerning equipotential surfaces is false?
 - B) <u>No work is done by the net electric force as a charge moves from</u> <u>one equipotential surface to another.</u>
- 9) Complete the following statement: Along an equipotential surface,C) <u>The electric field lines are perpendicular to the surface.</u>
- 10) Equipotential surfaces associated with an electric dipole are:
 - **D**) None of the above