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CHAPTER 8 

MAGNETIC FIELD  

8.1 INTRODUCTION: 

As we have discussed, one major goal of physics is the study of how an electric field 

can produce an electric force on a charged object. A closely related goal is the study of how a 

magnetic field can produce a magnetic force on a (moving) charged particle or on a magnetic 

object such as a magnet. The applications of magnetic fields and magnetic forces are countless 

and changing rapidly every year. Here are just a few examples. For decades, the entertainment 

industry depended on the magnetic recording of music and images on audiotape and videotape. 

Although digital technology has largely replaced magnetic recording, the industry still depends 

on the magnets that control CD and DVD players and computer hard drives; magnets also drive 

the speaker cones in headphones, TVs,  computers, and telephones. A modern car comes 

equipped with dozens of magnets because they are required in the motors for 

engine ignition, automatic window control, sunroof control, and windshield wiper 

control. Most security alarm systems, doorbells, and automatic door latches employ magnets. 

In short, you are surrounded by magnets. The science of magnetic fields is physics; the 

application of magnetic fields is engineering. Both the science and the application begin with 

the question “What produces a magnetic field?  

- Produces a magnetic field 

There are two ways.  

✓ The first :- Moving electrically charged particles, such as a current in a wire, to make 

an electromagnet. The current produces a magnetic field that can be used. 

✓ The second :- produce a magnetic field is by means of elementary particles such as 

electrons because these particles have an intrinsic magnetic field around them. 

Our first job in this chapter is to define the magnetic field B. We do so by using the 

experimental fact that when a charged particle moves through a magnetic field, a magnetic force 

FB acts on the particle. 
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8.2 MAGNETIC FIELDS AND FORCES 

We determined the electric field �⃗⃗�  at a point by putting a test particle of charge q at rest at 

that point and measuring the electric force 𝑭𝑬
⃗⃗ ⃗⃗   acting on the particle. We then defined as �⃗⃗�  

�⃗⃗� =
𝑭𝑬⃗⃗⃗⃗  ⃗

𝒒
                                                                                                                                 8.1 

the region of space surrounding any moving electric charge also 

contains a magnetic field. A magnetic field also surrounds a magnetic 

substance making up a permanent magnet. Historically, the symbol 

B has been used to represent a magnetic field, and this is the notation 

we use in this text. The direction of the magnetic field B at any 

location is the direction in which a compass needle points at that 

location. As with the electric field, we can represent the magnetic 

field by means of drawings with magnetic field lines. As shown in 

Figure.1. Note that the magnetic field lines outside the magnet point away from north poles 

and toward south poles. One can display magnetic field patterns of a bar magnet using small 

iron filings, as shown in Figure.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of Magnetic Field B 

a magnetic field B at some point in space in terms of the magnetic force FB that the field exerts 

on a charged particle moving with a velocity v, which we call the test object. 

Properties of the Magnetic Force on a charge moving in a Magnetic Field B 

➢ The magnitude FB of the magnetic force exerted on the particle is proportional to the 

charge q and to the speed v of the particle. 

Fig.1 

Fig.2 
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➢ The magnitude and direction of FB depend on the velocity of the particle and on the 

magnitude and direction of the magnetic field B. 

➢ When a charged particle moves parallel to the magnetic field vector, the magnetic force 

acting on the particle is zero. 

➢ When the particle’s velocity vector makes any angle θ ≠ 0 with the magnetic field, the 

magnetic force acts in a direction perpendicular to both v and B; that is, FB is 

perpendicular to the plane formed by v and B (Fig. 3a). 

➢ The magnetic force exerted on a positive charge is in the direction opposite the direction 

of the magnetic force exerted on a negative charge moving in the same direction (Fig. 

3b). 

➢ The magnitude of the magnetic force exerted on the moving particle is proportional to 

sin θ, where θ is the angle the particle’s velocity vector makes with the direction of B. 

 

 

 

 

 

 

 

 

 

 

 

 

We can summarize these observations by writing the magnetic force in the form 

𝑭𝑩 = 𝒒𝒗𝑩                                                                                                                              8.2 

We can regard this equation as definition of the magnetic field at some point in space. That is, 

the magnetic field is defined in terms of the force acting on a moving charged particle. 

 

Figure 4 reviews two right-hand rules for determining the direction of the cross product              

v  B and determining the direction of FB. The rule in Figure 4a depends on our right-hand rule 

for the cross product. Point the four fingers of your right hand along the direction of v with the 

palm facing B and curl them toward B. The extended thumb, which is at a right angle to the 

fingers, points in the direction of v  B. Because FB = q v B, FB is in the direction of your 

thumb if q is positive and opposite the direction of your thumb if q is negative. 

 

 

Fig.3 
b 

a 
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An alternative rule is shown in Figure 4b. Here the thumb points in the direction of v and the 

extended fingers in the direction of B. Now, the force FB on a positive charge extends outward 

from your palm. The advantage of this rule is that the force on the charge is in the direction 

that you would push on something with your hand outward from your palm. The force on a 

negative charge is in the opposite direction. Feel free to use either of these two right-hand rules. 

The magnitude of the magnetic force on a charged particle is 

𝑭𝑩 = |𝒒|𝒗𝑩𝐬𝐢𝐧 𝜽                                                                                                                8.3 

where θ is the smaller angle between v and B. From this expression, we see that FB is zero 

when v is parallel or antiparallel to B (θ = 0 or 180°) and maximum when v is perpendicular to 

B (θ = 90°). 

There are several important differences between electric and magnetic forces: 

➢ The electric force acts along the direction of the electric field, whereas the magnetic 

force acts perpendicular to the magnetic field. 

➢ The electric force acts on a charged particle regardless of whether the particle is moving, 

whereas the magnetic force acts on a charged particle only when the particle is in 

motion. 

➢ The electric force does work in displacing a charged particle, whereas the magnetic 

force associated with a steady magnetic field does no work when a particle is displaced 

because the force is perpendicular to the displacement. 

From the last statement and on the basis of the work–kinetic energy theorem,  we conclude that 

the kinetic energy of a charged particle moving through a magnetic field cannot be altered by 

the magnetic field alone. 

Fig.4 

a 

b 
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The SI unit of magnetic field is the newton per coulomb-meter per second, which is called 

the Tesla (T): 

𝟏𝑻 = 𝟏
𝑵

𝑪.𝒎/𝑺
 

Because a coulomb per second is defined to be an ampere, we see that 

𝟏𝑻 = 𝟏
𝑵

𝑨.𝒎
 

Non-SI magnetic-field unit in common use, called the gauss (G), is related to the tesla through 

the conversion 1 T = 104 G. 

 The north-pole end of a bar magnet is held near a positively charged piece of 

plastic. Is the plastic (a) attracted, (b) repelled, or (c) unaffected by the magnet? 

 A charged particle moves with velocity v in a magnetic field B. The magnetic force 

on the particle is a maximum when v is (a) parallel to B, (b) perpendicular to B, (c) 

zero 

8.3 MAGNETIC FIELD LINES 

Figure shows how the magnetic field near a bar magnet (a permanent 

magnet in the shape of a bar) can be represented by magnetic field lines. 

The lines all pass through the magnet, and they all form closed loops (even 

those that are not shown closed in the figure).The external magnetic effects 

of a bar magnet are strongest near its ends, where the field lines are most 

closely spaced. The (closed) field lines enter one end of a magnet and exit 

the other end. The end of a magnet from which the field lines emerge is 

called the north pole of the magnet; the other end, where field lines enter 

the magnet, is called the south pole . Because a magnet has two poles, it is 

said to be a magnetic dipole. 

If we place two of them near each other we find: 

Opposite magnetic poles attract each other, and like magnetic poles repel each other. 

 

 

Quiz 

Quiz 
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8.4 MAGNETIC FORCE ACTING ON A CURRENT-

CARRYING CONDUCTOR 

One can demonstrate the magnetic force acting on a current-carrying conductor by hanging a 

wire between the poles of a magnet, as shown in Figure 5a. For ease in visualization, part of 

the horseshoe magnet in part (a) is removed to show the end face of the south pole in parts (b), 

(c), and (d) of Figure 5. The magnetic field is directed into the page and covers the region 

within the shaded squares. When the current in the wire is zero, the wire remains vertical, as 

shown in Figure 5b. However, when the wire carries a current directed upward, as shown in 

Figure 5c, the wire deflects to the left. If we reverse the current, as shown in Figure 5d, the 

wire deflects to the right. 

 

 

 

 

 Let us this discussion by considering a straight segment of wire of length L and cross-

sectional area A, carrying a current I in a uniform magnetic field B, as shown in Figure 6. The 

magnetic force exerted on a charge q moving with a drift velocity vd is qvd  B. To find the 

total force acting on the wire, we multiply the force qvd  B exerted on one charge by the 

number of charges in the segment. Because the volume of the segment is AL, the number of 

charges in the segment is nAL, where n is the number of charges per unit volume. Hence, the 

total magnetic force on the wire of length L is  

𝑭𝑩 = (𝒒𝒗𝒅 × 𝑩)𝒏𝑨𝑳                                        

The current in the wire is I= nqvdA. Therefore, 

𝑭𝑩 = 𝑰𝑳 × 𝑩                                               8.4                                   

where L is a vector that points in the direction of the  current I and has a magnitude equal to 

the length L of the segment. in a uniform magnetic field. 

 

 

Fig.5 

Fig.6 
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8.5 TORQUE ON A CURRENT LOOP 

Figure a shows a rectangular loop of sides a and b, carrying 

current i through uniform magnetic field B. The loop in the 

field is placed in a magnetic field so that the normal �̂� to the 

loop forms an angle θ with �⃗⃗�  . The magnitude of the magnetic 

force on sides 1 and 3 is  

𝑭𝟏 − 𝑭𝟑 = 𝒊𝒂𝑩𝐬𝐢𝐧 𝟗𝟎 = 𝒊𝒂𝑩                                            

Also, the magnetic force on sides 2 and 4 is  

𝑭𝟐 − 𝑭𝟒 = 𝒊𝒂𝑩𝐬𝐢𝐧(𝟗𝟎 − 𝜽) = 𝒊𝒂𝑩𝐜𝐨𝐬 𝜽                                            

You can show that the force acting on side F4 has the same 

magnitude as F2 but the opposite direction. Thus, F4 and F2 cancel 

out exactly. Their net force is zero and, because their common line 

of action is through the center of the loop, their  net torque is also 

zero. 

The moment arm for F1 and F2 is equal (b/2) sinθ. The two torques 

tend up rotate the loop in the same (clockwise) direction and thus add up. 

The net toque   

𝝉 = 𝝉𝟏 − 𝝉𝟑 = (𝒊𝒂𝒃𝑩/𝟐) 𝐬𝐢𝐧 𝜽 + (𝒊𝒂𝒃𝑩/𝟐)𝐬𝐢𝐧𝛉 = 𝒊𝒂𝑩𝐬𝐢𝐧𝛉 = 𝐢𝐀𝐁𝐬𝐢𝐧𝛉                                            

8.6 THE MAGNETIC DIPOLE MOMENT 

The torque of  a coil that has  N loops, or turns exerted by a uniform magnetic field 

and carries a current i is given by Eq. τ = NiAB. We define a new Vector μ associated with 

the coil which is know as the Magnetic dipole moment of the coil 

The magnitude Magnetic dipole moment μ is given by μ = NiA. 

in which N is the number of turns in the coil, i is the current through 

the coil, and A is the area enclosed by each turn of the coil. 

the unit of μ is the ampere–square meter (A .m2) or joule per tesla (J/T) 

and its direction is perpendicular to the plan of the coil 

The torque on the coil due to a magnetic field can be written by. 

τ = μBsinθ 

in which θ is the angle between the vectors τ and μ 
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We can generalize this to the vector relation 

�⃗� = �⃗⃗� × �⃗⃗�  

The potential energy of the coil is 𝑼 = −𝝁𝑩𝐜𝐨𝐬𝜽 = −�⃗⃗� × �⃗⃗�  

𝑼 has a minimum value of − 𝝁𝑩 for 𝜽 = 𝟎 ( 𝐬𝐭𝐚𝐛𝐥𝐞 equilibrium). 

𝑼 has a maximum value of 𝝁𝑩 for 𝜽 = 𝟏𝟖𝟎° (𝐮𝐧𝐬𝐭𝐚𝐛𝐥𝐞 equilibrium). 

𝑵𝒐𝒕𝒆:  For both positions the net torque is 𝝉 = 𝟎. 
 

8.7 THE HALL EFFECT 

In 1879 Edwin Hall carried out an experiment in which 

he was able to determine that conduction in metals is due to the 

motion of  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 charges (electrons). He was also able to 

determine the concentration 𝒏 of the electrons. He used a strip 

of copper of width  𝒅 and thickness  𝓵.  He passed a current  𝒊 

along the length of the strip and applied a magnetic field 𝑩 

perpendicular to the strip as shown in the figure. In the 

presence of �⃗⃗�  the electrons experience a magnetic force �⃗⃗� 𝑩 that 

pushes them to the right (labeled R) side of the strip.  This 

accumulates negative charge on the R-side and leaves the left 

side (labeled L) of the strip positively charged.  As a result of 

the accumulated charge, an electric field �⃗⃗�  is generated as 

shown in the figure, so that the electric force balances the 

magnetic force on moving charges: 

𝑭𝑬 = 𝑭𝑩 

𝒆𝑬 = 𝒆𝒗𝒅𝑩 

𝑬 = 𝒗𝒅𝑩                                                                8.5                                   

∵ 𝑱 = 𝒏𝒆𝒗𝒅 

𝒗𝒅 =
𝑱

𝒏𝒆
=

𝒊

𝑨𝒏𝒆
=

𝒊

𝓵𝒅𝒏𝒆
                                              8.6 

Hall measured the potential difference  𝑽 between the left and the right side of the metal strip:  

𝑽=𝑬𝒅                                                                                  8.7 

We substitute 𝑬 from eq. 8.7 and  𝒗𝒅  from eq. 8.6 into eq. 8.5  and get: 

𝑽

𝒅
= 𝑩

𝒊

𝓵𝒅𝒏𝒆
     

R L 
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  𝒏 =
𝑩𝒊

𝑽𝓵𝒆
                                                                                                                           8.8          

Figs. 𝒂 and  𝒃 were drawn assuming that the carriers are electrons. In this case if we define 

𝑽=𝑽𝑳−𝑽𝑹  we get a 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 value.  

If we assume that the current is due to the motion of positive charges (see fig. 𝒄) then positive 

charges accumulate on the R-side and negative charges on the L-side,  

Thus,  𝑽=𝑽𝑳−𝑽𝑹  is now a  𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 number. 

 By determining the polarity of the voltage that develops between the left−and right−hand sides 

of the strip, Hall was able to prove that current was composed of moving electrons. From the 

value of  𝑽 using equation 8.8 he was able to determine the concentration of the negative 

charge carriers. 

8.8 THE BIOT–SAVART LAW 

Shortly after Oersted’s discovery in 1819 that a compass needle is deflected by a 

current-carrying conductor, Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841) 

performed quantitative experiments on the force exerted by 

an electric current on a nearby magnet. From their 

experimental results, Biot and Savart arrived at a 

mathematical expression that gives the magnetic field at some 

point in space in terms of the current that produces the field. 

That expression is based on the following experimental 

observations for the magnetic field dB at a point P associated 

with a length element ds of a wire carrying a steady current I 

(Fig. 7): 

➢ The vector dB is perpendicular both to ds (which points in the direction of the current) 

and to the unit vector rˆ directed from ds toward P. 

➢ The magnitude of dB is inversely proportional to r2, where r is the distance from ds to 

P. 

➢ The magnitude of dB is proportional to the current and to the magnitude ds of the length 

element ds. 

➢ The magnitude of dB is proportional to sin θ, where θ is the angle between the vectors 

ds and rˆ. 

 

 

Fig.7 
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These observations are summarized in the mathematical expression known today  as the 

Biot–Savart law: 

  𝒅𝑩 =
𝝁𝒐

𝟒𝝅

𝑰𝒅𝒔×�̂�

𝒓𝟐
                                                                                                         8.9      

where μo is a constant called the permeability of free space: μo = 4 10-7 T.m/A 

Note that  

The field dB in Equation 8.9 is the field created by the current in only a small length element 

ds of the conductor. To find the total magnetic field B created at some point by a current of 

finite size, we must sum up contributions from all current elements I ds that make up the 

current. 

That is, we must evaluate B by integrating Equation 8.9      

 

  𝒅𝑩 =
𝝁𝒐𝑰

𝟒𝝅
∫

𝒅𝒔×�̂�

𝒓𝟐
                                                                                                         8.10      

where the integral is taken over the entire current distribution. This expression must be handled 

with special care because the integrand is a cross product and therefore a vector quantity. 

✓ Magnetic Field Due to a Current in a Long Straight Wire 

The magnitude of the magnetic field at a perpendicular distance R from a long (infinite)  

straight wire carrying a current i is given by 

  𝒅𝑩 =
𝝁𝒐𝑰

𝟒𝝅𝑹
                                                                                                                8.11     

The field magnitude B in Eq. 8.11 depends only on the current and the perpendicular distance 

R of the point from the wire. We shall show in our derivation that the field lines B of form 

concentric circles around the wire, as Fig. 8 shows. The increase in the spacing of the lines in 

Fig. 8 with increasing distance from the wire represents the 1/R decrease in the magnitude of 

predicted by Eq. 8.11. The lengths of the two vectors in the figure also show the 1/R decrease. 

 

 

 

 

 

 

 

Fig.8 
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Here is a simple right-hand rule for finding the direction of the magnetic field set up by a 

current-length element, such as a section of a long wire: 

 

 

 

 

 

 

 

Right-hand rule: 

 Grasp the element in your right hand with your extended thumb pointing in the direction of 

the current. Your fingers will then naturally curl around in the direction of the magnetic field 

lines due to that element. 

8.9 AMPÈRE’S LAW 

Oersted’s 1819 discovery about deflected compass needles demonstrates that a current-

carrying conductor produces a magnetic field. Figure 9a shows how this effect can be 

demonstrated in the classroom. Several compass needles are placed in a horizontal plane near 

a long vertical wire. When no current is present in the wire, all the needles point in the same 

direction (that of the Earth’s magnetic field), as expected. When the wire carries a strong, 

steady current, the needles all deflect in a direction tangent to the circle, as in Figure 9b. 

 

 

 

 

 

 

 

 

We find that B is proportional to the current i and inversely proportional to the distance R 

from the wire. 

Now let us evaluate the product B.ds for a small length element ds on the circular path defined 

by the compass needles, and sum the products for all elements over the closed circular path. 

Fig.9 
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Along this path, the vectors ds and B are parallel at each point (see Fig. 9b), so B. ds = B ds. 

Furthermore, the magnitude of B is constant on this circle and is given by Equation 8.11. 

Therefore, the sum of the products Bds over the closed path, which is equivalent to the line 

integral of B.ds, is 

 ∮  𝑩𝒅𝒔 = 𝑩∮  𝒅𝒔 =
𝝁𝒐𝑰

𝟐𝝅𝒓
𝟐𝝅𝒓 = 𝝁𝒐𝑰                                                                        

where ∮  𝒅𝒔= 2r is the circumference of the circular path. Although this result was calculated 

for the special case of a circular path surrounding a wire, it holds for a closed path of any shape 

(an amperian loop) surrounding a current that exists in an unbroken circuit. The general case, 

known as Ampère’s law, can be stated as follows: 

The line integral of B.ds around any closed path equals μo I, where I is the total steady current 

passing through any surface bounded by the closed path. 

∮  𝑩𝒅𝒔 = 𝝁𝒐𝑰                                                                                                                    8.12     

Ampère’s law describes the creation of magnetic fields by all continuous current 

configurations, but at our mathematical level it is useful only for calculating the magnetic field 

of current configurations having a high degree of symmetry. Its use is similar to that of Gauss’s 

law in calculating electric fields for highly symmetric charge distributions. 

 

 

 

 

 

 

 

 

 

Then we use the following curled–straight right-hand rule to assign a plus sign or a minus 

sign to each of the currents.  

Curl your right hand around the Amperian loop, with the fingers pointing in the direction of 

integration. A current through the loop in the general direction of your outstretched thumb is 

assigned a plus sign, and a current generally in the opposite direction is assigned a minus sign. 
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8.10 CLASSIFICATION OF MAGNETIC SUBSTANCES 

Substances can be classified as belonging to one of three categories, depending on their 

magnetic properties.  

✓ Paramagnetic and ferromagnetic materials are those made of atoms that have 

permanent magnetic moments.  

✓ Diamagnetic materials are those made of atoms that do not have permanent 

magnetic moments. 

For paramagnetic and diamagnetic substances, the magnetization vector M is proportional to 

the magnetic field strength H. For these substances placed in an external magnetic field, we 

can write 

M = 𝝌𝑯                                                                                                                              8.13     

where χ (Greek letter chi) is a dimensionless factor called the magnetic susceptibility. It can be 

considered a measure of how susceptible a material is to being magnetized.  

For paramagnetic substances  

- χ is positive and M is in the same direction as H.  

For diamagnetic substances 

-  χ is negative and M is opposite H. 

the magnetic flux density or the magnetic induction is. 

B = 𝝁𝒎𝑯                                                                                                                            8.14     

where the constant μm is called the magnetic permeability of the substance and is related to the 

susceptibility by 

𝝁𝒎 = 𝝁𝒐(𝟏 − 𝝌)                                                                                                            8.15     

Substances may be classified in terms of how their magnetic permeability μm compares with 

μo (the permeability of free space), as follows:  

Paramagnetic μm > μo 

Diamagnetic μm < μo 

Because χ is very small for paramagnetic and diamagnetic 

 substances (see Table), μm is nearly equal to μo for these 

substances. For ferromagnetic substances, however, μm is 

 typically several thousand times greater than μo (meaning 

 that χ is very large for ferromagnetic substances). 
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1. FERROMAGNETISM 

A small number of crystalline substances exhibit strong magnetic effects called 

ferromagnetism. Some examples of ferromagnetic substances are iron, cobalt, nickel, 

gadolinium, and dysprosium. These substances contain permanent atomic magnetic moments 

that tend to align parallel to each other even in a weak external magnetic field. Once the 

moments are aligned, the substance remains magnetized after the external field is removed. 

This permanent alignment is due to a strong coupling between neighboring moments, a 

coupling that can be understood only in quantum mechanical terms. 

All ferromagnetic materials are made up of 

microscopic regions called domains, regions within which all 

magnetic moments are aligned. These domains have volumes 

of about 10-12 to 10-8 m3 and contain 1017 to 1021 atoms. The 

boundaries between the various domains having different 

orientations are called domain walls. In an unmagnetized 

sample, the magnetic moments in the domains are randomly 

oriented so that the net magnetic moment is zero, as in Figure 

10a. When the sample is placed in an external magnetic field 

B0, the size of those domains with magnetic moments aligned 

with the field grows, which results in a magnetized sample, as 

in Figure 10b. As the external field becomes very strong, as in 

Figure 10c, the domains in which the magnetic moments are 

not aligned with the field become very small. When the 

external field is removed, the sample may retain a net 

magnetization in the direction of the original field. At ordinary 

temperatures, thermal agitation is not sufficient to disrupt this 

preferred orientation of magnetic moments 

 

 

 

 

 

Fig.10 
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2. PARAMAGNETISM 

Paramagnetic substances have a small but positive magnetic susceptibility (0 < χ << 1) 

resulting from the presence of atoms (or ions) that have permanent magnetic moments. These 

moments interact only weakly with each other and are randomly oriented in the absence of an 

external magnetic field. When a paramagnetic substance is placed in an external magnetic field, 

its atomic moments tend to line up with the field. However, this alignment process must 

compete with thermal motion, which tends to randomize the magnetic moment orientations. 

Pierre Curie (1859–1906) and others since him have found experimentally that, under a 

wide range of conditions, the magnetization of a paramagnetic substance is proportional to the 

applied magnetic field and inversely proportional to the absolute temperature: 

𝑴 = 𝑮
𝑩𝒐

𝑻
                                                                                                            8.16     

This relationship is known as Curie’s law after its discoverer, and the constant C is called 

Curie’s constant. The law shows that when B0= 0, the magnetization is zero, corresponding to 

a random orientation of magnetic moments. 

3. DIAMAGNETISM 

When an external magnetic field is applied to a diamagnetic substance, a weak magnetic 

moment is induced in the direction opposite the applied field. This causes diamagnetic 

substances to be weakly repelled by a magnet. Although diamagnetism is present in all matter, 

its effects are much smaller than those of paramagnetism or ferromagnetism, and are evident 

only when those other effects do not exist. 

Diamagnetic materials are repelled by a magnetic field; an applied magnetic field 

creates an induced magnetic field in them in the opposite direction, causing a repulsive force. 

In contrast, paramagnetic and ferromagnetic materials are attracted by a magnetic field. 

Diamagnetism is a quantum mechanical effect that occurs in all materials; when it is the only 

contribution to the magnetism, the material is called diamagnetic. In paramagnetic and 

ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of 

magnetic dipoles in the material. The magnetic permeability of diamagnetic materials is less 

than μ0, the permeability of vacuum. In most materials, diamagnetism is a weak effect which 

can only be detected by sensitive laboratory instruments, but a superconductor acts as a strong 

diamagnet because it repels a magnetic field entirely from its interior. 
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8.11 FARADAY’S LAW OF INDUCTION 

To see how an emf can be induced by a changing magnetic field, consider a loop of wire 

connected to a sensitive ammeter, as illustrated in Figure 11. When a magnet is moved toward 

the loop, the galvanometer needle deflects in one direction, arbitrarily shown to the right in 

Figure 11a. When the magnet is brought to rest and held 

stationary relative to the loop (Fig. 11b), no deflection is observed. When the magnet is moved 

away from the loop, the needle deflects in the opposite direction, as shown in Figure 11c. 

Finally, if the magnet is held stationary and the loop is moved either toward or away from it, 

the needle deflects. From these observations, we conclude that the loop detects that the magnet 

is moving relative to it and we relate this detection to a change in magnetic field. Thus, it seems 

that a relationship exists between current and changing magnetic field.  

These results are quite remarkable in view of the fact that a current is set up even though no 

batteries are present in the circuit! We call such a current an induced current and say that it is 

produced by an induced emf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11 
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Now let us describe an experiment conducted by Faraday and illustrated in Figure 12. A 

primary coil is connected to a switch and a battery. The coil is wrapped around an iron ring, 

and a current in the coil produces a magnetic field when the switch is closed. A secondary coil 

also is wrapped around the ring and is connected to a sensitive ammeter. No battery is present 

in the secondary circuit, and the secondary coil is not electrically connected to the primary coil. 

Any current detected in the secondary circuit must be induced by some external agent. Initially, 

you might guess that no current is ever detected in the secondary circuit. However, something 

quite amazing happens when the switch in the primary circuit is either opened or thrown closed. 

At the instant the switch is closed, the galvanometer needle deflects in one direction and then 

returns to zero. At the instant the switch is opened, the needle deflects in the opposite direction 

and again returns to zero. 

Finally, the galvanometer reads zero when there is  either a steady current or no current in the 

primary  circuit. The key to understanding what happens in this  experiment is to note first that 

when the switch is closed, the current in the primary circuit produces  a magnetic field that 

penetrates the secondary circuit.  Furthermore, when the switch is closed, the magnetic field 

produced by the current in the primary circuit changes from zero to some value over some finite 

time, and this changing field induces a current in the secondary circuit. 

 

 

 

 

 

 

 

 

 

 

As a result of these observations, Faraday concluded that an electric current can be induced in 

a circuit (the secondary circuit in our setup) by a changing magnetic field. The induced current 

exists for only a short time while the magnetic field through the secondary coil is changing. 

Once the magnetic field reaches a steady 

value, the current in the secondary coil disappears. In effect, the secondary circuit behaves as 

though a source of emf were connected to it for a short time. It is customary to say that an 

induced emf is produced in the secondary circuit by the changing magnetic field.  

Fig.12 
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The experiments shown in Figures 11 and 12 have one thing in common: in each case, an emf 

is induced in the circuit when the magnetic flux through the circuit changes with time. In 

general, 

“The emf induced in a circuit is directly proportional to the time rate of change of the magnetic 

flux through the circuit.” 

This statement, known as Faraday’s law of induction, can be written 

𝜺 = −
𝒅𝝓𝑩

𝒅𝒕
                                                                                                            8.17    

where 𝝓𝑩 = ∫𝐵𝑑𝐴 is the magnetic flux If the circuit is a coil consisting of N loops all of the 

same area and if 𝝓𝑩 is the magnetic flux through one loop, an emf is induced in every loop. 

The loops are in series, so their emfs add; thus, the total induced emf in the coil is given by the 

expression 

𝜺 = −𝑵
𝒅𝝓𝑩

𝒅𝒕
                                                                                                            8.18    

Suppose that a loop enclosing an area A lies in a uniform magnetic field B, as in Figure 13. The 

magnetic flux through the loop is equal to BA cosθ ; hence, the induced emf can be expressed 

as 

𝜺 = −
𝒅

𝒅𝒕
(𝑩𝑨𝐜𝐨𝐬𝜽)                                                8.19    

From this expression, we see that an emf can be induced  

in the circuit in several ways: 

✓ The magnitude of B can change with time. 

✓ The area enclosed by the loop can change with time. 

✓ The angle θ between B and the normal to the loop can 

 change  with time. 

✓ Any combination of the above can occur. 

 

 

 

 

Fig.13 


